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Introduction

QSim is a thread safe multicore emulation library based on the QEMU emulator. QSim provides
instruction-level control of the emulated environment and detailed information about the executing
instruction stream. X86 Linux guests are supported with hundreds of emulated hardware contexts,
each of which can run in an independent host thread. Applications of QSim include trace-gathering,
multithreaded software development, and its primary target: microarchitecture simulation.

In the domain of microarchtiecture simulators, the advantage of using a library like QSim is
that the instruction set is emulated with high fidelity by QEMU, so the simulator only needs to
implement those aspects of the instruction set relevant to its results. This has both advantages and
disadvantages that have been discussed at length elsewhere.

0.1 Requirements

The following are needed to run QSim on your machine. Before you attempt to build and run QSim,
make sure these are available:

• 64-bit CPU and operating system

• 2GB of RAM and at least 4GB of swap

• Libraries and compiler to build 32-bit binaries
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Chapter 1

QSim Software Architecture

QSim is an effort in combining several large and complex open source software packages into a single
entity. The QSim code is very small compared to the QEMU and Linux codebases it leverages.
These other projects are not included with QSim, but are downloaded and patched by the provided
scripts getqemu.sh and getkernel.sh.

1.1 QSim Design

1.1.1 The QEMU Emulator

A block diagram of QEMU is shown in Figure 1.1. QEMU is an open source PC emulator that uses
dynamic binary translation to translate guest instructions to a host instructions in the translation
cache. Multiple guest architectures are supported, both as guests and hosts, including x86, SPARC,
and PowerPC. The environment provided by QSim allows an operating system and applications to be
run in an emulated environment, instruction by instruction, on multiple emulated cores. Currently
only 32-bit x86 guests are supported, but other architectures are expected to become available.

Figure 1.2 illustrates the QEMU translation process. This is a two-step process in which guest
instructions are translated into Tiny Code Generator (TCG) operations and then host instructions.
QSim allows the creation of helper functions, which are functions that can be called from the trans-
lation cache. QEMU uses helper functions to implement uncommon but complex guest instructions,
so that they do not have to be implemented entirely as large and complex blocks of code that are
compiled at run-time.

QSim uses the helper function mechanism to instrument guest instructions. Calls to helper

State

RAM Main

Loop

Register

FunctionsState

Cache

Translation

Utility

Functions

Helper

Figure 1.1: Block diagram of QEMU.
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Guest Block Translated BlockTCG Ops

mov 0x10(%ebp), %eax

mov %eax, %ecx

mov (%ecx), %eax

mov 0x10(%ebp), %edx

add $0x4, %edx

mov %edx, 0x10(%ebp)

mov %eax, 0x20(%ebp)

mov $0x18, %eax

mov %eax, 0x30(%ebp)

xor %eax, %eax

jmp epilogue

ld_i32 tmp2, env+$0x10

qemu_ld32 utmp0, tmp2+$−1

ld_i32 tmp4, env+$0x10

movi_i32 tmp14, $4

add_i32 tmp4, tmp4, tmp14

st_i32 tmp4, env+$0x10

st_i32 tmp0, env+$0x20

movi_i32 cc_op, $0x18

exit_tb 0

push %ebp

mov %esp, %ebp

not %eax

mov %edx, %eax

xor $0x55555555, %eax

pop %ebp

ret

add %eax, %edx

Figure 1.2: QEMU translation process with expansion of return instruction from a guest basic block.

functions are added to the translations of instrumented instructions. From these helper functions,
callbacks that have been registered by the user’s program are called.

1.1.2 The QSim Library

Figure 1.3 is an illustration of the fully-integrated QSim software architecture. The QEMU emulator,
as seen in Figure 1.1 is present, replicated once per simulated hardware context and sharing guest
RAM state. The QSim library makes calls into these QEMU CPUs on behalf of the client program,
and the QEMU CPUs make the callbacks into the client programs based on events in the instruction
stream. A variety of different callbacks are provided, including:

• Every instruction

• Atomic memory operations

• Memory reads/writes

• Register reads/writes

• Interrupts

• “Magic” CPUID instructions

The atomic memory operation and read/write callbacks are given in addition to the instruction
callbacks for their corresponding instructions. Magic instructions are used to provide out-of-band
communication between the guest and QSim, and are explained in detail in Section 1.3.

1.1.3 Guest Environment

The QSim guest environment includes the Linux kernel, the Busybox all-in-one userland, an init
script, and a statically-linked application binary. Since QSim currently provides no emulation of
disk or network devices, guest programs are loaded as part of a Linux inital RAM filesystem.

Porting applications to the guest environment and building the Linux kernel image is discussed
at length in Chapter 4.

1.1.4 Remote QSim

For environments where detailed, distributed high-core-count simulations are performed, QSim pro-
vides a client/server version that can operate over a network. Each server is intended to support
hundreds of clients, one for each simulated hardware context. Further discussion of remote QSim is
in Chapter 2.
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Figure 1.3: Block diagram of QSim library design with arrows representing data flow between
components.

1.1.5 QDB, The QSim Debugger

QDB provides a commandline interface to QSim that can be used to debug guest applications,
geust operating systems, and the QSim library itself. Compared to the rest of QSim, QDB is in
an earlier state of development. It is for this reason that QDB maintains its own list of bugs and
unimplemented features.

1.1.6 The Fastforwarder

The QSim fastforwarder, qsim-fastforward is used to generate state files that represent the state
of RAM after the machine has booted, but before the application has began running. This is so that
the potentially very long time spent waiting for Linux to boot can be amortized over all simulations
using a given bzImage and number of QEMU CPUs.

State File

Simulation

1

Fast

Forward

Simulation

2

Simulation

3

. . .

Figure 1.4: Operation of qsim-fastforward generates a reuseable state file.
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1.2 QSim Directory Hierarchy

What follows is a tour of the directory structure of the QSim codebase. This is provided as both a
reference and an introduction.

1.2.1 Documentation

INSTALL

README

doc/

doc/web

doc/ contains this document, of which README is an abridged version. INSTALL is a simple runlog
containing all of the commands needed to create a useable QSim installation.

doc/web is the QSim website, included here so that it may be modified under version control as
needed.

1.2.2 QSim Core

qsim.h

qsim-regs.h

qsim-vm.h

qsim-context.h

mgzd.h

vm-func.h

qsim.cpp

Makefile

These files form the core of QSim. qsim-regs.h defines enum regs, an important enumeration of
guest register names shared between the modifications to QEMU and QSim. qsim-vm.h defines the
types of the basic callback functions that are called from within QEMU, as well as qemu ramdesc t,
a structure used to describe guest RAM areas within QEMU to allow sharing of memory between
multiple instances of QEMU. mgzd.h and qsim-context.h provide the services necessary to maintain
multiple separate instances of QEMU as though they were components of the same program. qsim.h
and qsim.cpp are the actual nuts and bolts of QSim. qsim.h must be included by any client program
of QSim and qsim.cpp is the only source in what becomes qsim.so.

Makefile leaves a lot to be desired, but it is responsible for building QSim. For more information
on building QSim, see INSTALL in the QSim root directory.

1.2.3 Fast Forwarder

fastforwarder.cpp

statesaver.cpp

statesaver.h

These files ocmpile to a program called qsim-fastforwarder, which is used as described in Section
1.1.6 to eliminate the start-up portion of long simulations, especially ones with high core counts.

1.2.4 QEMU

getqemu.sh

qemu-0.12.3.qsim.patch

qemu-0.12.3/

This directory appears after getqemu.sh has been run and contains the modified QEMU. The result
of a successful compile of QEMU for QSim is a shared object file which will be used by the QSim
library.
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1.2.5 Initial Ram Filesystem

initrd/

initrd/init

initrd/mark_app.c

initrd/qsim_io.c

initrd/test_threads.c

initrd/busybox-1.16.1

initrd/etc

The initrd directory contains the userspace portion of the guest environment, which is packaged
into a Linux initial RAM filesystem and compiled into the Linux kernel. Information on how to
configure the guest system is in Chapter 4.

1.2.6 Linux Kernel Sources

linux/

linux/getkernel.sh

linux/linux-2.6.34.qsim.patch

linux/bzImage

linux/linux-2.6.34/

A modified Linux kernel is used by QSim. The getkernel.sh script downloads the unomdified kernel
from upstream and patches it with modifications that allow it to boot in QSim guest environment,
without using BIOS or usual PC hardware services that QSim does not provide.

1.2.7 Disassembler

distorm/

Several of the examples and the QSim Debugger require a disassembler. Distorm was chosen as a
simple, portable, open source disassembly library. Note that it is not part of QSim proper; it is just
a utility library that the bundled applications happen to require that was considered uncommon
enough to be included with the source distribution.

1.2.8 Remote QSim

remote/

remote/README

remote/qsim-net.h

remote/client

remote/client/Makefile

remote/client/qsim-client.cpp

remote/client/qsim-client.h

remote/client/client.cpp

remote/server

remote/server/Makefile

remote/server/server.cpp

Remote QSim, covered in detail in Chapter 2, is a simple way to share a single instance of
the QSim emulator among several remote processes. Remote QSim includes a server program
(server.cpp), the client library (qsim-client.h, qsim-client.cpp), and a sample remote client
program (client.cpp).
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Value in %rax Function
0xc501e0xx Console output, character x.
0x1d1e1d1e Calling CPU now executing idle loop.
0xc75cxxxx Context switch to TID x.
0xb007xxxx Bootstrap CPU x, %ip provided by subsequent magic instruction.
0x1dxxxxyy Inter-processor interrupt. Interrupt CPU x with vector y.
0xc7c7c7c7 Request CPU count, returned in %rax.
0x512e512e Request RAM size in MB, returned in %rax.
0xaaaaaaaa Application start signal. Causes application start callback to be called.
0xfa11dead Application end signal. Causes application end callback to be called.

Table 1.1: Magic Instructions provided by OSDomain.

1.2.9 Simplesim

simplesim/

SimpleSim is an example multicore out-of-order CPU simulator.

1.2.10 Examples

examples/

examples/qtm.cpp

examples/simple.cpp

examples/io-test.cpp

examples/vistrace.cpp

The “examples” are example client program using the QSim library. One of these, simple.cpp, is
examined in detail in Chapter 3 as an example client program using QSim.

1.2.11 QDB: The QSim Debugger

qdb/

qdb/BUGS

QDB provides a commandline interface to a QSim, running one guest CPU per host thread. QDB
allows users to load in symbol tables for both the kernel and individual user address spaces. It also
provides dynamic instruction count based flat profiling with uniform statistical sampling. The best
documentation for QDB is its own built-in help system, which can be accessed at any time by typing
help.

1.3 Magic Instructions

QSim provides an interface for out-of-band communication between the guest environment, QSim
library, and its client programs, through use of magic instructions. Magic instructions are QSim-
defined regions of the CPUID address space that perform special functions. CPUID is ordinarily
used by software to get information about the CPU on which it is running. A value is loaded into
RAX and once the CPUID instruction has run, the registers are set according to the results. This
is used ordinarily to query CPUs for features.

In QSim, the magic instructions are used to provide simplified, paravirtualized, emulated hard-
ware. Magic instruction callbacks can also be set by client programs to extend this interface. Ta-
ble 1.1 lists the magic instructions defined by QSim itself and used by the Linux kernel and some of
the guest software.



Chapter 2

Remote QSim

QSim, in addition to providing a local library, also provides a remote version that can be used over
a network. This is to allow the use of QSim in distributed architectural simulations where the front
end emulation is not considered a bottleneck.

Figure 2.1 is a block diagram of the QSim remote architecture. The server is an ordinary client
program to an instance of the local QSim library. Remote clients connect over the network using the
QSim Client library, which provides an interface very similar to the local OSDomain to the remote
clients.

2.1 Using the Server

The QSim server is in remote/server and can be built by running make in that directory. Once
built, running the server with no command line options will display its usage. It takes the following
command line options in the given order:

• The port to listen for incoming to connections on

• Number of QEMU CPUs (simulated hardware contexts)

• Path to kernel image file

• Optional size of guest RAM in megabytes

An example is:

$ ./server 1234 2 bzImage

The QSim server sends console output to the console on which it is started, so expect the usual
boot messages. To test this server, the sample client can be started with:

$ ./client localhost 1234

This is also the port address used by the simple example program covered in Chapter 3, the
remote version of which is built as examples/simple-client.

2.2 Writing a Client

A remote QSim client differs from an ordinary QSim client program primarily in using Qsim::Client

instead of the usual Qsim::OSDomain. Many of the API calls are similar. The program listed in
Chapter is a great example of the differences.

13
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QSim Library

QSim Client Library

Client Program

QSim Client Library

Client Program

. . .

.  .  .

QEMU CPU

Mgmt.

Context

Register

FunctionsState

Cache

Translation

Main Loop

Shared RAM State

CallbacksQSim Server

TCP

Helper

Figure 2.1: Remote QSim allows multiple clients to connect to a QSim server.



Chapter 3

A Sample Client Program

The use of QSim fundamentally boils down to a few simple steps that a client program must take:

• Instantiate one (and only one) OSDomain.

• Attach instrumentation to that OSDomain.

• Call run() on that OSDomain, ocasionally calling timer interrupt().

• Do something with the information collected by the instrumentations.

The last step is purely optional, but there would not be much reason to use QSim without the
instrumentation.

For the purposes of this Chapter, we will examine examples/simple.cpp, the simple example;
a multicore trace gathering utility.

3.1 Operation

As illustrated in Figure 3.1, simple.cpp is basically a trace gatherer. It installs a set of callbacks
that print messages to a textual trace file whenever they are called.

3.2 Listing

1 /*****************************************************************************\

2 * Qemu Simulation Framework (qsim) *

3 * Qsim is a modified version of the Qemu emulator (www.qemu.org), coupled *

4 * a C++ API, for the use of computer architecture researchers. *

5 * *

6 * This work is licensed under the terms of the GNU GPL, version 2. See the *

7 * COPYING file in the top-level directory. *

8 \*****************************************************************************/

9 #include <iostream>

10 #include <fstream>

11 #include <iomanip>

12 #include "distorm.h"

13 #include <qsim.h>

14 #ifdef QSIM_REMOTE

15 #include "../remote/client/qsim-client.h"

15
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QSim

(Local or Remote)

main()

Memory Op

Instruction

Atomic

I/O Op

Interrupt

Trace File

TraceWriter

Constructor

Callbacks

Register

Figure 3.1: Design of the simple.cpp example program.

16 using Qsim::Client;

17 #define QSIM_OBJECT Client

18 #else

19 using Qsim::OSDomain;

20 #define QSIM_OBJECT OSDomain

21 #endif

22 using std::ostream;

23 class TraceWriter {

24 public:

25 TraceWriter(QSIM_OBJECT &osd, ostream &tracefile) :

26 osd(osd), tracefile(tracefile), finished(false)

27 {

28 #ifdef QSIM_REMOTE

29 app_start_cb(0);

30 #else

31 osd.set_app_start_cb(this, &TraceWriter::app_start_cb);

32 #endif

33 }

34 bool hasFinished() { return finished; }

35 void app_start_cb(int c) {

36 static bool ran = false;

37 if (!ran) {

38 ran = true;

39 osd.set_inst_cb(this, &TraceWriter::inst_cb);

40 osd.set_atomic_cb(this, &TraceWriter::atomic_cb);
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41 osd.set_mem_cb(this, &TraceWriter::mem_cb);

42 osd.set_int_cb(this, &TraceWriter::int_cb);

43 osd.set_io_cb(this, &TraceWriter::io_cb);

44 osd.set_reg_cb(this, &TraceWriter::reg_cb);

45 #ifndef QSIM_REMOTE

46 osd.set_app_end_cb(this, &TraceWriter::app_end_cb);

47 #endif

48 }

49 }

50 void app_end_cb(int c) { finished = true; }

51 int atomic_cb(int c) {

52 tracefile << std::dec << c << ": Atomic\n";

53 return 0;

54 }

55 void inst_cb(int c, uint64_t v, uint64_t p, uint8_t l, const uint8_t *b,

56 enum inst_type t)

57 {

58 _DecodedInst inst[15];

59 unsigned int shouldBeOne;

60 distorm_decode(0, b, l, Decode32Bits, inst, 15, &shouldBeOne);

61 tracefile << std::dec << c << ": Inst@(0x" << std::hex << v << "/0x" << p

62 << ", tid=" << std::dec << osd.get_tid(c) << ", "

63 << ((osd.get_prot(c) == Qsim::OSDomain::PROT_USER)?"USR":"KRN")

64 << (osd.idle(c)?"[IDLE]":"[ACTIVE]")

65 << "): " << std::hex;

66 //while (l--) tracefile << ’ ’ << std::setw(2) << std::setfill(’0’)

67 // << (unsigned)*(b++);

68 if (shouldBeOne != 1) tracefile << "[Decoding Error]";

69 else tracefile << inst[0].mnemonic.p << ’ ’ << inst[0].operands.p;

70 tracefile << " (" << itype_str[t] << ")\n";

71 }

72 void mem_cb(int c, uint64_t v, uint64_t p, uint8_t s, int w) {

73 tracefile << std::dec << c << ": " << (w?"WR":"RD") << "(0x" << std::hex

74 << v << "/0x" << p << "): " << std::dec << (unsigned)(s*8)

75 << " bits.\n";

76 }

77 int int_cb(int c, uint8_t v) {

78 tracefile << std::dec << c << ": Interrupt 0x" << std::hex << std::setw(2)

79 << std::setfill(’0’) << (unsigned)v << ’\n’;

80 return 0;

81 }

82 void io_cb(int c, uint64_t p, uint8_t s, int w, uint32_t v) {

83 tracefile << std::dec << c << ": I/O " << (w?"WR":"RD") << ": (0x"

84 << std::hex << p << "): " << std::dec << (unsigned)(s*8)
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85 << " bits.\n";

86 }

87 void reg_cb(int c, int r, uint8_t s, int type) {

88 tracefile << std::dec << c << (s == 0?": Flag ":": Reg ")

89 << (type?"WR":"RD") << std::dec;

90 if (s != 0) tracefile << ’ ’ << r << ": " << (unsigned)(s*8) << " bits.\n";

91 else tracefile << ": mask=0x" << std::hex << r << ’\n’;

92 }

93 private:

94 QSIM_OBJECT &osd;

95 ostream &tracefile;

96 bool finished;

97 static const char * itype_str[];

98 };

99 const char *TraceWriter::itype_str[] = {

100 "QSIM_INST_NULL",

101 "QSIM_INST_INTBASIC",

102 "QSIM_INST_INTMUL",

103 "QSIM_INST_INTDIV",

104 "QSIM_INST_STACK",

105 "QSIM_INST_BR",

106 "QSIM_INST_CALL",

107 "QSIM_INST_RET",

108 "QSIM_INST_TRAP",

109 "QSIM_INST_FPBASIC",

110 "QSIM_INST_FPMUL",

111 "QSIM_INST_FPDIV"

112 };

113 int main(int argc, char** argv) {

114 using std::istringstream;

115 using std::ofstream;

116 ofstream *outfile(NULL);

117 unsigned n_cpus = 1;

118 #ifndef QSIM_REMOTE

119 // Read number of CPUs as a parameter.

120 if (argc >= 2) {

121 istringstream s(argv[1]);

122 s >> n_cpus;

123 }

124 #endif

125 // Read trace file as a parameter.

126 if (argc >= 3) {

127 outfile = new ofstream(argv[2]);

128 }
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129 #ifdef QSIM_REMOTE

130 Client osd(client_socket("localhost", "1234"));

131 n_cpus = osd.get_n();

132 #else

133 OSDomain *osd_p(NULL);

134 OSDomain &osd(*osd_p);

135 if (argc >= 4) {

136 // Create new OSDomain from saved state.

137 osd_p = new OSDomain(argv[3]);

138 n_cpus = osd.get_n();

139 } else {

140 osd_p = new OSDomain(n_cpus, "linux/bzImage");

141 }

142 #endif

143 // Attach a TraceWriter if a trace file is given.

144 TraceWriter tw(osd, outfile?*outfile:std::cout);

145 // If this OSDomain was created from a saved state, the app start callback was

146 // received prior to the state being saved.

147 if (argc >= 4) tw.app_start_cb(0);

148 #ifndef QSIM_REMOTE

149 osd.connect_console(std::cout);

150 #endif

151 // The main loop: run until ’finished’ is true.

152 while (!tw.hasFinished()) {

153 for (unsigned i = 0; i < 100; i++) {

154 for (unsigned j = 0; j < n_cpus; j++) {

155 osd.run(j, 10000);

156 }

157 }

158 osd.timer_interrupt();

159 }

160

161 if (outfile) { outfile->close(); }

162 delete outfile;

163 #ifndef QSIM_REMOTE

164 delete osd_p;

165 #endif

166 return 0;

167 }

3.3 Instantiating OSDomain

As is often found in simple QSim client programs, the single OSDomain (there can only be one) is
allocated on the heap in the main() function at lines 123 through 132. This allows the same osd

reference to be used for either an OSDomain constructed with a number of CPUs and a kernel image
or an OSDomain constructed from a state file.
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If the QSIM REMOTE macro is defined, this will not be done, and instead a Qsim::Client will be
created, connecting to a predefined host and port.

3.4 The Callback System

simple.cpp uses instruction, atomic, memory, interrupt, and I/O callbacks and logs the occurrence
of each to a trace file. Application start and end callbacks are used. TraceWriter::app start cb()

sets the callbacks that perform tracing, and TraceWriter::app end cb() sets a flag that causes the
main loop to exit.

app start cb() is not called in remote QSim. Instead, fast-forwarding to the application start is
done automatically, before any clients are allowed to connect. If QSIM REMOTE is set, the application
start callback is called by the TraceWriter constructor instead, and no start or end callbacks are
set.



Chapter 4

Porting Guest Software

Currently, there are two available methods for loading guest software into QSim. It can be compiled
into the kernel image, or it can be transferred to the guest environment through the initrd/qsim io.c

program. With the former method, the mechanism through which they are loaded is the Linux initial
RAM f ilesystem (initramfs). This allows a root filesystem to be included along with the kernel
image and mounted at start-up, even without support for disks.

The latter method involves using the initramfs and the qsim io program to transfer a program.
The default init script does this. An example of a client program that transfers a file in this manner
is in examples/test-io.cpp.

Porting an application to QSim consists of the following steps:

• Compile the application for 32-bit Linux, statically linked.

• Copy the application and all needed files into initrd/sbin.

• Modify the initrd/init script appropriately.

• Run make in initrd to build initrd.cpio.

• Run ARCH=i386 make in the Linux kernel root to create bzImage, the kernel image which will
be loaded into the QSim address space.

4.1 Compiling for QSim

On a 64-bit host, creating 32-bit statically-linked binaries is a matter of passing the -m32 option to
the GCC compiler and the -static option to the linker. In a typical GNU Autotools based build
environment, this can be accomplished with:

$ CFLAGS=-m32 CXXFLAGS=-m32 LDFLAGS=-static ./configure

$ make

The file command can be used to ensure that the resulting binary is actually a 32-bit statically-
linked ELF.

4.2 Setting Up the Linux Initial Ramdisk

The initrd makefile is set up so that any files placed in initrd/sbin will be added to the generated
initrd.cpio. User applications are not, however, included as dependencies, so when modifying
them it is prudent to perform a make clean before running make to produce the ramdisk file.
Typically the only actions required to set up the linux filesystem is to copy the application binary
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into initrd/sbin, modify the initrd/init script to launch the application, and run make clean

followed by make.
The init script contains, out of the box, a set of sample application invocations commented out

with octothorpes. If using one of the prepackaged benchmarks, it is only necessary to uncomment
the corresponding line. Otherwise, the appropriate command can be added anywhere between the
invocation of mark app and mark app END.

4.2.1 Busybox Utility Programs

The command interpreter used to execute the init script, as well as most of the utility programs
available within it (cat, grep, ls) are provided by the Busybox all-in-one userland. It provides
smaller-footprint versions of common Unix utilities, accessed by a set of symbolic links to the same
file.

4.2.2 QSim Guest Utilities

The initial ramdisk also contains a set of QSim-specific utilities and test programs:

qsim-out

Uses the magic instruction mechanism to copy program input to the QSim console.

mark_app [END]

Uses the magic instruction mechanism to mark the start and end of the application. This causes
the application start and end callbacks described on pages 29-31 to be called.

test-threads

Simply spawns 100 threads and waits for them to exit. Each thread grabs a mutex, prints a message,
and exits. Used to check that atomic memory operations are being treated as such by the client
program; not a simple task if this application is multithreaded.

4.3 Compiling the Kernel Image

Initially, the kernel image must be configured with the absolute path to the initrd.cpio file. The
configuration system can be launched by changing to the kernel root and running:

$ ARCH=i386 make menuconfig

The option to configure the path to the RAM disk CPIO file is under “General Options”. After
this initial configuration has been performed, subsuquent builds only require the second step of the
process, running make with ARCH set to i386:

$ ARCH=i386 make

4.4 Using the Kernel with QSim

A symlink to the kernel this produces is conveniently placed in the linux/ directory. This is the
default kernel image as used by all of the programs in examples/. QDB takes the path of the kernel
image as a commandline option. Within client programs, the path to the kernel is an argument to
the OSDomain constructor (see OSDomain, page 26 for details).



Glossary

atomic memory operation A memory operation that is required by the architecture to complete
as an indivisible operation. Atomic read-modify-write operations like XCHG are used in the
implementation of synchronization primitives.

callback A function passed as an argument to another layer of the software stack, so that it can
be called by software in that layer as necessary. In QSim, callbacks are code within the client
program that is called from helper functions. Callbacks are the primary way QSim allows
its users to instrument the code executing in the guest. The word “callback” can also be
used to refer to the instance of a specific call to a callback function. For example, “A memory
operation callback will be received after any exception conditions on the address being accessed
are cleared up.” In this sentence, the “memory operation callback” is not the function itself,
but a specific instance of a call to the function.

client program An application that makes use of a library; for the purposes of this document the
“client program” is always an application that uses QSim.

guest The simulated system, or virtual machine, within QSim. Often used as an adjective to
describe a data structure: “guest CPU state;” the registers of the virtual CPU stored in a
data structure within QEMU, “guest RAM;” the memory image of the guest machine. Used
as an antonym of host, the machine on which QSim and the client program runs.

helper function Part of QEMU, a C function intended to be called from the translation cache.
Helper functions are used to implement guest functionality that is complex and not time
critical. Their use results in more compact translated code and a simpler binary translator.

host The machine on which QSim and its client program runs, antonym of guest. Used to describe
abstractions that may otherwise be confused for aspects of the guest system: “host virtual
address”, “host instruction set.”

magic instruction An instruction that provides a service not found in current hardware, decoded
using an unorthodox mechanism. In QSim, magic instructions are CPUID instructions initiated
with invalid values in %rax. These can be tied to callbacks and used to implement new features
or create debugging output.

OS domain A collection of CPUs among which memory is sequentially consistent and cache co-
herent, usually associated with a single operating system image. The OSDomain class gets its
moniker from this concept.

QEMU CPU A hardware context within QEMU. Not to be confused with a CPU in the sense of
an entire chip, or in the sense of a core within that chip that may support multiple contexts
through and SMT arrangement. A four-core chip with 2-way SMT, for example, would be
emulated with 8 QEMU CPUs.

remote QSim The distributed version of the QSim library. Separates functionality into an emula-
tion server and a client which exports an API similar to locally-running QSim.
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translation cache The data structure into which a dynamic binary translator like QEMU places
the result of translation and from which the translated code is run. The only code emulating
guest instructions is executed by the host through the translation cache, either directly or by
calling helper functions.



Appendix A

API Documentation

What follow are descriptions of the user-facing classes of which QSim is comprised and their inter-
faces, member types, and member variables. By far the most important class of these is OSDomain,
as described in Chapter 3 and documented on page 26. Entire simulators can be built interacting
only with OSDomain. The other available classes provide various utility functions and the ability to
interact directly with the QEMU CPU objects that normally comprise an OSDomain.

The most important utility class is Queue, described on page 36. It provides a way to delay the
processing of execution events until after they have been emulated. Use of Queues allows all of the
processing of events to be centralized within a single main loop instead of scattered through multiple
callbacks. Although this results in a loss of control over the instruction-level timing in QSim, it is
ideally suited for applications in which this is irrelevant or of diminished importance, such as trace
generation and simple application evaluation.
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A.1 Qsim::OSDomain

OSDomain is a singleton class that creates and manages a multicore processor emulator. The simplest
way to use QSim is to instantiate a QSim OSDomain, provide it with a set of callbacks or a Queue,
and start running instructions on it, periodically calling OSDomain::timer interrupt(). This is
exactly what the sample program in Chapter 3 does. OSDomain means “Operating System domain.”
It is so named because all of the CPUs in it share one cache coherent and sequentially consistent
block of RAM that contains a single OS image.

A.1.1 Member Types

enum cpu_mode {

MODE_REAL, MODE_PROT, MODE_LONG

};

Used to describe the current mode of the CPU. While 32-bit real mode and 16-bit protected
mode do exist on the hardware, for modern operating systems it can be assumed that MODE REAL

means 16-bit default operand sizes and is only encountered during boot, and MODE PROT means 32-
bit default operand sizes. MODE LONG only works in protected mode, and has 64-bit default operand
sizes.

enum cpu_prot {

PROT_KERN, PROT_USER

};

Describes the current protection level of the CPU. While x86 actually provides a MULTICS-
like ring system complete with hardware-defined task and call gate structures and four levels of
protection, these still exist only for backwards compatability. This data type is used to describe
whether a given CPU within QSim is running in supervisor mode (ring 0) or user mode.

A.1.2 Member Functions

OSDomain(uint16_t n,

std::string kernel_path,

unsigned ram_mb = 2048);

This OSDomain constructor takes as parameters n, the number of CPUs, kernel path, the path
to an appropriate bzImage and optionally ram mb, the size of system RAM in megabytes.

OSDomain(const char *state_file);

The other OSDomain constructor loads the state from a file. This allows for fast startup compared
to emulating the entire boot process.

bool idle(unsigned i);

Returns true if CPU i is running its idle loop according to the OS, false otherwise.

int get_tid(uint16_t i);

If Linux has booted, returns the task ID of the thread currently running on CPU i. Otherwise
returns −1.

enum cpu_mode get_mode(uint16_t i);

Returns the mode (real, protected, or long) of CPU i (see enum cpu mode, page 26). Not capable
of distinguishing 16-bit protected mode, but this is not used by any current OS.
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enum cpu_prot get_prot(uint16_t i);

Returns the current protection ring (kernel or user) of CPU i (see enum cpu prot, page 26).

int get_n() const;

Returns the number of CPUs being emulated.

qemu_ramdesc_t get_ramdesc() const;

Returns the qemu ramdesc t structure used by the instances of QEMU within this OSDomain to
share their memory region (see qemu ramdesc t, page 38).

unsigned run(uint16_t i, unsigned n);

Run the emulator on CPU i for n instructions or until an exception condition occurs. Returns the
number of instructions for which the CPU actually ran. Exception conditions are caused by callbacks
that return nonzero and by the CPU being not yet booted. Since the callbacks are managed by the
client program and whether the CPU has been booted can be determined through other means (see
OSDomain::booted(), page 27), a direct method of determining which condition terminated the run
is not necessary.

void connect_console(std::ostream &s);

The given stream is added to the list of streams to which character output from the guest software
stack is delivered. This text is delivered one character at a time using a magic instruction.

void timer_interrupt();

Send a timer interrupt to all of the CPUs in the OSDomain. Linux expects to see these at a rate of
100Hz, or once every 10ms. Spacing calls to timer interrupt() appropriately is the fundamental
way the progress of simulation time can be communicated to the guest.

void interrupt(unsigned i, uint8_t vec);

Interrupt CPU i, causing it to run the interrupt service routine pointed to by vector vec.

bool booted(unsigned i);

Returns true if CPU i has been brought up by the operating system, and false otherwise.

void save_state(const char* state_file);

Save the state of the emulator to the given file. The OSDomain must be booted and running in
protected mode, and must not be using floating point, SSE, or MMX register state when this is
called. Also, unless this is called during an instruction callback, the previous instruction will be re-
executed when the state is loaded. For an example demonstrating how to overcome this limitation,
see examples/fastforwarder.cpp and its dependencies.

typedef int (*atomic_cb_t)(int cpu);

void set_atomic_cb(uint16_t i, atomic_cb_t cb);

void set_atomic_cb(atomic_cb_t cb);

Set a callback to be called from within the translation cache every time an atomic memory operation
is encountered. Can be set for a given CPU i or, omitting this parameter, for all CPUs. This callback
is of the form shown in the definition of atomic cb t and occurs after the corresponding instruction
callback is made but before the instruction is executed. If the callback returns nonzero, the atomic
operation will not complete and the call to run() (see OSDomain::run(), page func:run) will return.
New callback assignments replace the previous assignment. If a null pointer is provided, the callback
will be disabled.



28 APPENDIX A. API DOCUMENTATION

typedef void (*inst_cb_t)(int cpu,

uint64_t vaddr,

uint64_t paddr,

uint8_t len,

const uint8_t *bytes);

void set_inst_cb(uint16_t i, inst_cb_t cb);

void set_inst_cb(inst_cb_t cb);

Set a callback to be called from within the translation cache every time a guest instruction begins
executing. This callback is made prior to the instruction’s execution, and upon its return, the in-
struction will begin. In the event of a page fault while accessing the instruction itself, the appropriate
interrupt callback will be generated with no prior instruction callback for the faulting instruction,
since the fetch itself and not the execution of the instruction failed, followed by the execution of
the interrupt handler and finally the execution of the faulting instruction including the appropriate
instruction callback.

If, however, a memory operation that is part of the instruction execution fails, the instruction
callback will be seen twice, once for each attempt at executing the instruction.

Instruction callbacks provide an identifier for the CPU on which the instruction will execute, the
virtual and physical address of the instruction, its size, and a pointer to the instruction code. They
can be set for specific CPUs i or all CPUs in the OSDomain. New callback assignments replace the
previous assignment. If a null pointer is provided, the callback will be disabled.

typedef int (*mem_cb_t)(int cpu,

uint64_t vaddr,

uint64_t paddr,

uint8_t size,

int write);

void set_mem_cb(uint16_t i, mem_cb_t cb);

void set_mem_cb(mem_cb_t cb);

Set up a function to be called from within the translation cache every time a memory operation is
encountered. Read operation callbacks occur immediately before the read occurs, to allow the value
being read to be modified by the callback, and write operation callbacks occur immediately after
the write, to allow the value just written to be read. Reads are, however, tried before the callback
is called. This means that any page fault that would occur always happens before the callback is
called, so that once the callback is reached the addresses are guaranteed to be reachable.

Memory operation callbacks take as arguments the CPU identifier for the CPU on which they
execute, virtual and physical addresses, their size, and a flag that is 1 if the operation is a write and
0 if the operation is a read. These callbacks can be set for specific CPUs i or for all of the CPUs
in the OSDomain. New callback assignments replace the previous assignment. If a null pointer is
provided, the callback will be disabled.

typedef int (*int_cb_t)(int cpu, uint8_t vec);

void set_int_cb(uint16_t i, int_cb_t cb);

void set_int_cb(int_cb_t cb);

Set up an interrupt callback, either for a specific CPU i or all CPUs in the OSDomain. These callbacks
are called at the moment any interrupt, hardware or software, occurs. Hardware interrupts always
happen after an instruction has finished executing. Software exceptions such as page faults occur
at the point in the execution of their instruction that the exception condition arises. In the case of
page faults, this is prior to the receipt of a memory callback for the faulting address but after the
receipt of an instruction callback for the instruction performing the access.

Interrupt callbacks take the CPU identifier and the 8-bit interrupt vector as parameters. Other
related information, such as the fault address in the case of a page fault, can be retreived with
OSDomain::get reg() (see page 31). Like the atomic memory operation callback (see page 27), the



A.1. QSIM::OSDOMAIN 29

interrupt callback can return nonzero to halt instruction execution at a given point and force run()

to return prematurely. This can be used to provide resolution to an exception condition from within
the main loop instead of a callback. New callbacks assigned with this function replace the old ones.
A null assignment will disable the callback.

typedef void (*io_cb_t)(int cpu,

uint64_t port,

uint8_t size,

int type,

uint32_t val);

void set_io_cb(uint16_t i, io_cb_t cb);

void set_io_cb(io_cb_t cb);

Set an I/O callback. Similar to the memory callback, but much simpler due to the simple flat I/O
address space provided by the x86 architecture. Does not yet allow for modifying the value returned
by an IN instruction, but does allow reading the value (val) provided by the OUT instruction. New
callbacks assigned with this function replace the old ones. A null assignment will disable the callback.

typedef void (*reg_cb_t)(int cpu,

int reg,

uint8_t size,

int type);

void set_reg_cb(uint16_t i, reg_cb_t cb);

void set_reg_cb(reg_cb_t cb);

Set a register callback. Same semantics as memory callback. The reg parameter can be interpreted
as a member of enum regs (see page 37). In the special case that size is zero, the register callback
can be interpreted as a flag bit read or write. In this case, type is the logical or of one or more
elements of enum flags (see page ??).

void set_app_start_cb(void (*f)(int));

A simple callback that uses a magic instruction delivered by the guest application or a three-
instruction utility program to provide an indication of when this application begins running. Includes
a CPU identifier, but this cannot be taken to mean the CPU on which the benchmark begins ex-
ecution, since the magic instruction may have been deliviered by a utility program and not the
benchmark application itself. Common uses include fast-forwarding simulators past the boot se-
quence in a purely emulated mode and resetting performance counters within simulators so that at
application end they reflect only the operations created by the application being evaluated. New
callbacks assigned with this function replace the old ones. A null assignment will disable the callback.

void set_app_end_cb(void (*f)(int));

A simple callback that uses a magic instruction delivered by a three-instruction utility program
to indicate when the guest application has terminated. Typically used to end the simulation. New
callbacks assigned with this function replace the old ones. A null assignment will disable the callback.

template <typename T>

void set_atomic_cb(T* o,

int (T::*f)(int cpu));

Same as set atomic cb() on page 27, but instead of operating on a static or global function is
capable of making calls to arbitrary member functions of any instance o of any class T, that fit the
prototype. Also capable of making multiple calls, so that functionality can be combined. New calls
to this version of set atomic cb() do not replace the previous callback but instead add a new one.
In this way, functionality can be combined.

It is important to note that this callback system is incompatible with the other one. Calls to
this version of set atomic cb() disable static callbacks, and new static callbacks disable these class
member callbacks.
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template <typename T>

void set_magic_cb(T* o,

int (T::*f)(int cpu,

uint64_t rax));

The only way to set magic instruction callbacks in OSDomain, since OSDomain’s static magic instruc-
tion callback is already of central importance and cannot be overridden. Provides an easy way to
add new magic instructions by intercepting CPUID instructions.

template <typename T>

void set_io_cb(T* o,

void (T::*f)(int cpu,

uint64_t port,

uint8_t size,

int write,

uint32_t value));

The equivalent of set atomic cb() (see page 29) for the I/O callback (see set io cb(), page 29).

template <typename T>

void set_reg_cb(T* o,

void (T::*f)(int cpu,

uint64_t port,

uint8_t size,

int type));

The equivalent of set atomic cb() (see page 29) for the register callback (see set reg cb(), page
29).

template <typename T>

void set_mem_cb(T* o,

void (T::*f)(int cpu,

uint64_t vaddr,

uint64_t paddr,

uint8_t size,

int write));

The equivalent of set atomic cb() (see page 29) for the memory operation callback (see set mem cb(),
page 28).

template <typename T>

void set_int_cb(T* o,

int (T::*f)(int cpu,

uint8_t vector));

The equivalent of set atomic cb() (see page 29) for the interrupt callback (see set int cb(), page
28).

template <typename T>

void set_inst_cb(T* o,

void (T::f)(int cpu,

uint64_t vaddr,

uint64_t paddr,

uint8_t len,

const uint8_t *bytes));
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The equivalent of set atomic cb() (see page 29) for the instruction callback (see set inst cb(),
page 27).

template <typename T>

void set_app_start_cb(T* o,

void (T::f)(int));

The equivalent of set atomic cb() (see page 29) for the application start callback (see set app start cb(),
page 29).

template <typename T>

void set_app_end_cb(T* o,

void (T::f)(int));

The equivalent of set atomic cb() (see page 29) for the application end callback (see set app end cb(),
page 29).

uint64_t get_reg(unsigned cpu, enum regs r);

Retrieve the value of a register on CPU i, referenced using one of the names from enum regs (see
page 37).

void set_reg(unsigned cpu, enum regs r, uint64_t value);

Alter the value of a register on CPU i, referenced using one of the names from enum regs (see page
37).

template <typename T> void mem_rd(T& d, uint64_t paddr);

Read a value of arbitrary size from guest RAM at physical address paddr.

template <typename T> void mem_wr(T& d, uint64_t paddr);

Write a value of arbitrary size to guest RAM at physical address paddr.

template <typename T>

void mem_rd_virt(unsigned i, T& d, uint64_t vaddr);

Read a value of arbitrary size from guest RAM at virtual address vaddr, translating the address
according to CPU i.

template <typename T>

void mem_wr_virt(unsigned i, T& d, uint64_t vaddr);

Write a value of arbitrary size to guest RAM at virtual address vaddr, translating the address
according to CPU i.

A.1.3 Utility Functions

The following functions are not part of Qsim::OSDomain proper, but act on OSDomains to provide
important features:

void load_file(OSDomain &osd, const char *filename);

If the OSDomain is running the qsim-io guest program, this function will provide input through
this system. This is used by the default initial ramdisk to load a tar archive containing the applica-
tion to be run, along with any data and libraries it needs. A demonstration of the use of load-file
can be seen in examples/io-test.cpp.
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A.2 Qsim::QemuCpu

QemuCpu is the basic CPU element in QSim, instantiated once for each CPU in the OSDomain.
QemuCpu can also be instantiated by the client program directly, which could be used in the simulation
of more complex distributed or non-coherent architectures. The guest RAM state illustrated in
Figure 1.3 is contained inside of a “master”, QemuCpu allocated by QEMU. Multiple “slave” QemuCpu

objects share the RAM state allocated by the master, including the kernel image loaded by it. The
various callback setters and other functions behave similarly to the way they do in OSDomain, but
with less emphasis on convenience of use for the end-user.

A.2.1 Member Functions

QemuCpu(int id, const char* kernel, unsigned ram_mb=1024);

Construct a master QemuCpu with ram mb megabytes of guest RAM and load the kernel image at
the path in kernel.

QemuCpu(int id, QemuCpu *master_cpu, unsigned ram_mb=1024);

Create a slave QemuCpu, with master cpu as its master. ram mb must match the value of ram mb

given for the master.

unsigned run(unsigned n);

Run for n instructions or until an exception condition occurrs. Explained more fully in the description
OSDomain::run() (see page 27).

typedef int (*atomic_cb_t)(int cpu);

void set_atomic_cb(atomic_cb_t cb);

Set an atomic memory operation callback for this CPU as explained in the description of the corre-
sponding member function of OSDomain on page 27.

typedef void (*inst_cb_t)(int cpu,

uint64_t vaddr,

uint64_t paddr,

uint8_t len,

const uint8_t *bytes);

void set_inst_cb(inst_cb_t cb);

Set an instruction callback for this CPU as explained in the description of the corresponding member
function of OSDomain on page 27.

typedef int (*mem_cb_t)(int cpu,

uint64_t vaddr,

uint64_t paddr,

uint8_t size,

int write);

void set_mem_cb(mem_cb_t cb);

Set a memory operation callback for this CPU as explained in the description of the corresponding
member function of OSDomain on page 28.

typedef int (*int_cb_t)(int cpu, uint8_t vec);

void set_int_cb(int_cb_t cb);

Set an interrupt callback for this CPU as explained in the description of the corresponding member
function of OSDomain on page 28.
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typedef int (*magic_cb_t)(int cpu, uint64_t rax);

void set_magic_cb(magic_cb_t cb);

Set a magic instruction callback for this CPU. While this works similar to the callback setters for
OSDomain, there is no way to set a static magic instruction callback for OSDomain as it already
provides one. It is, however, possible to set member function callbacks as described on page 29.

typedef void (*io_cb_t)(int cpu,

uint64_t port,

uint8_t size,

int type,

uint32_t val);

void set_io_cb(io_cb_t cb);

Set an I/O operation callback for this CPU as explained in the description of the corresponding
member function of OSDomain on page 29.

typedef void (*reg_cb_t)(int cpu,

int reg,

uint8_t size,

int type);

void set_io_cb(reg_cb_t cb);

Set a register access callback for this CPU as explained in the description of the corresponding
member function of OSDomain on page 29.

uint8_t mem_rd(uint64_t pa);

Read byte at physical address pa.

void mem_wr(uint64_t pa, uint8_t val);

Write byte val to physical address pa.

uint8_t mem_rd_virt(uint64_t va);

Read byte at virtual address va.

void mem_wr_virt(uint64_t va, uint8_t val);

Write byte val to virtual address va.

int interrupt(uint8_t vec);

Trigger an interrupt on this CPU with vector vec.

uint64_t get_reg(enum regs r);

Retreive the contents of register r.

void set_reg(enum regs r, uint64_t v);

Set the contents of register r to value v.

qemu_ramdesc_t get_ramdesc() const;

Get the RAM descriptor for this CPU. Details of the qemu ramdesc t structure are on page A.8.
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A.3 Qsim::Client

The client class, located in remote/client/qsim-client.h, provides an OSDomain-like interface
to a remote QSim server.

A.3.1 Member Functions

Client(int socket);

Construct a client connected to the server on socket. The parameter is typically provided by the util-
ity function client socket(const char *host, const char *port), from remote/qsim-net.h,
which is included by remote/client/qsim-client.h.

unsigned run(unsigned short cpu, unsigned insts);

void timer_interrupt();

void interrupt(int cpu, uint8_t vec);

bool booted(unsigned i);

bool idle(unsigned cpu);

unsigned get_n();

unsigned get_tid(unsigned cpu);

Qsim::OSDomain::cpu_mode get_mode(unsigned cpu);

Qsim::OSDomain::cpu_prot get_prot(unsigned cpu);

template <typename T> void set_atomic_cb(T* p, ...);

template <typename T> void set_inst_cb(T*, ...);

template <typename T> void set_int_cb(T*, ...);

template <typename T> void set_mem_cb(T*, ...);

template <typename T> void set_magic_cb(T*, ...);

template <typename T> void set_io_cb(T*, ...);

template <typename T> void set_reg_cb(T*, ...);

These functions are equivalent to their Qsim::OSDomain counterparts, with the exception that
Qsim::Client::booted() cannot be called from within a callback function. The final arguments
to the callback setters have been removed for clarity.
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A.4 Qsim::QueueItem

QueueItems contain instruction, memory, and interrupt data that would otherwise have been pro-
vided by a callback. They allow the callback arguments to be stored in a Queue (see page 36) for
later processing. The QueueItem class provides three constructors corresponding to the three differ-
ent types of data a QueueItem can hold. These constructors should rarely, if ever, need to be called
by a QSim client program.

A.4.1 Member Functions

QueueItem(uint64_t vaddr,

uint64_t paddr,

uint8_t len,

const uint8_t *bytes);

Creates a QueueItem with type = QueueItem::INST and populates data accordingly.

QueueItem(uint64_t vaddr,

uint64_t paddr,

uint8_t size,

int type);

Creates a QueueItem with type = QueueItem::MEM and populates data accordingly.

QueueItem(uint8_t vec);

Creates a QueueItem with type = QueueItem::INTR and populates data accordingly.

A.4.2 Member Variables

enum { INST, MEM, INTR } type;

Specifies the type of a QueueItem. Using an enum and a union instead of inheritance makes it
possible to make Queue a queue of QueueItem objects themselves instead of pointers, simplifying
the allocation of these objects and improving performance.

union {

struct {

uint64_t vaddr;

uint64_t paddr;

uint8_t len;

uint8_t bytes[15];

} inst;

struct {

uint64_t vaddr;

uint64_t paddr;

uint8_t size;

int type;

} mem;

struct {

uint8_t vec;

} intr;

} data;

The data carried by a QueueItem. Which of the three structs to read is determined by the value of
type.
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A.5 Qsim::Queue

A.5.1 Inheritance

class Queue : public std::queue<QueueItem>;

Queue inherits from std::queue<QueueItem>. It automatically enqueues objects of type QueueItem
using callbacks within QSim. User software can use the familiar standard library operations to ac-
cess these objects. Additional information on the use of Queue can be found in the API reference
entry on QueueItem, page 35. Queue objects are instantiated on a per-guest-CPU basis.

A.5.2 Member Functions

Queue(OSDomain &cd, int i, bool timer_int_on_hlt = true);

The Queue constructor attaches itself to CPU i of OSDomain cd. Since Queue sets a new instruction
callback, an option is provided to have this callback generate timer interrupts whenever a CPU
executes the HLT instruction, allowing simpler timing models that are based only on instruction
counts to be used. For an in-depth discussion of the HLT instruction and its implications in QSim,
see Section ?? on page ??.

void set_filt(bool user,

bool krnl,

bool prot,

bool real,

int tid = -1);

Set a filter on the queue so not all instructions executed cause items to be added to the queue.
A task ID field value of -1 (the default) represents all tasks. The filter actually created will be a
logical or of the options chosen. For example:

q.set_filt(true, true, true, false);

Only enqueues instructions executed in protected mode, at both user and kernel privilege levels.
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A.6 enum regs

The register enumeration contains at least the following entries:

enum regs {

QSIM_RAX, QSIM_RCX, QSIM_RDX, QSIM_RBX,

QSIM_RSP, QSIM_RBP, QSIM_RSI, QSIM_RDI,

QSIM_ES, QSIM_CS, QSIM_SS, QSIM_DS,

QSIM_FS, QSIM_GS, QSIM_ESB, QSIM_CSB,

QSIM_SSB, QSIM_DSB, QSIM_FSB, QSIM_GSB,

QSIM_ESL, QSIM_CSL, QSIM_SSL, QSIM_DSL,

QSIM_FSL, QSIM_GSL, QSIM_RIP, QSIM_RFLAGS,

QSIM_CR0, QSIM_CR2, QSIM_CR3

};

There is no guarantee on ordering or numerical value. All references to registers in the QSim
API use these names, defined in qsim-regs.h. Names of segment registers followed by ‘B’ and ‘L’,
such as QSIM CSB and QSIM CSL refer to the “base” and “length” properties of segments in 32-bit
protected mode. Note that also, no matter which mode the guest CPU is in, the register names
reflect their names in 64-bit long mode.
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A.7 enum flags

The flags enumeration contains at least the following entries, set up to be used as bits in a vector:

enum flags {

QSIM_FLAG_OF = 0x01, QSIM_FLAG_SF = 0x02,

QSIM_FLAG_ZF = 0x04, QSIM_FLAG_AF = 0x08,

QSIM_FLAG_PF = 0x10, QSIM_FLAG_CF = 0x20

};

This is defined in qsim-regs.h and used to generate the value for the reg parameter to the
register access callback in the case that size is zero, indicating a flag bit access.

A.8 qemu ramdesc t

This structure represents the memory map of a QSim CPU or OS domain. It contains pointers to
blocks allocated for each of three memory regions and values representing their size. It will contain
at least the following fields:

typedef struct {

uint8_t *low_mem_ptr;

size_t low_mem_sz;

uint8_t *below_4g_ptr;

size_t below_4g_sz;

uint8_t *above_4g_ptr;

size_t above_4g_sz;

} qsim_ramdesc_t;

These can be used to translate host addresses to guest physical addresses and vice-versa. “Low
memory” is RAM below 640k; “Below 4g” is RAM starting at 1M, and “above 4g” is RAM starting
at 4G, available only with PAE or 64-bit addressing.


